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Abstract 1 

 2 

The estimation accuracy of forecast error matrix is crucial to the assimilation 3 

result. Ensemble Kalman filter (EnKF) is a widely used ensemble based assimilation 4 

method, which initially estimate the forecast error matrix using a Monte Carlo 5 

method with the short-term ensemble forecast states. However, this estimate needs to 6 

be further improved using inflation technique.  7 

In this study, the forecast error inflation factor is estimated based on cross 8 

validation and the analysis sensitivity is also investigated. The improved EnKF 9 

assimilation scheme is validated by assimilating spatially correlated observations to 10 

the atmosphere-like Lorenz-96 model. The experiment results show that, the analysis 11 

error is reduced and the analysis sensitivity to observations is improved. 12 

 13 

Key words: data assimilation; ensemble Kalman filter; forecast error inflation; 14 

analysis sensitivity; cross validation 15 
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1. Introduction 1 

 2 

In the mathematical and physical research fields, data assimilation is a powerful 3 

mechanism to estimate the true trajectory of a state variable, based on the effective 4 

combination of the dynamic forecast system (numerical model) and the observations 5 

(Miller et al. 1994). It can provide an analysis state, which is generally treated as the 6 

weighted average of the model forecasts and observations, and is more close to the 7 

true state than either of them. The weights are approximately proportional to the 8 

inverse of the corresponding covariance matrices (Talagrand 1997). Therefore, the 9 

performance of a data assimilation method significantly relies on whether the error 10 

covariance matrices are estimated accurately. If this is the case, the analysis state can 11 

be technically easily obtained by minimizing a cost function with many existing 12 

optimization methods (Reichle 2008). 13 

Ensemble Kalman filter (EnKF) is a very practical ensemble based assimilation 14 

scheme, which estimates the forecast error covariance matrix using a Monte Carlo 15 

method with the short-term ensemble forecast states (Burgers et al. 1998; Evensen 16 

1994). Because of the limited ensemble size and large model error, the sampling 17 

covariance matrix of the ensemble forecast states is usually an underestimate of the 18 

true forecast error covariance matrix. It can lead that the filter over trusts the model 19 

forecasts and excludes the observations, and can eventually result in the divergence of 20 

the filter (Anderson; Anderson 1999; Constantinescu et al. 2007; Wu et al. 2014). 21 

Therefore, using the inflation technique to enhance the estimate accuracy of the 22 
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forecast error covariance matrix becomes gradually important. 1 

In early studies in forecast error inflation, researchers usually tune the inflation 2 

factor by repeated assimilation experiments and select the estimated inflation factor 3 

according to their experiences and prior knowledge (Anderson; Anderson 1999). 4 

Hence such experimental determining is very empirical and subjective. In later 5 

studies, the inflation factor can be estimated on-line based on the innovation statistic 6 

(observation-minus-forecast (Dee 1995; Dee; Silva 1999)) with some different 7 

conditions. The moment estimation can facilitate the calculation by solving an 8 

equation of the innovation statistic and its realization (Li et al. 2009; Miyoshi 2011; 9 

Wang; Bishop 2003). The maximum likelihood approach can obtain a better inflation 10 

but has to calculate a high dimensional matrix determinant (Liang et al. 2012; Zheng 11 

2009). The Bayesian approach assumes a prior distribution for the inflation factor but 12 

limited to the spatially independent observational errors (Anderson 2007, 2009). This 13 

study seeks to address the estimation of the inflation factor from the point view of 14 

Cross Validation (CV).  15 

In fact, the idea of Cross Validation (CV) is firstly involved in linear regression 16 

(Allen 1974) and smoothing spline (Wahba; Wold. 1975). It is a common approach 17 

that can be applied to estimate tuning parameters in generalized additive models, 18 

nonparametric regression and kernel smoothing (Eubank 1999; Gentle et al. 2004; 19 

Green; Silverman. 1994; Wand; Jones 1995). In cross validation, sample is cut into 20 

several smaller data subsets, and some of them are used for modeling and analysis 21 

while others are used for verification and validation. The widely used technique is to 22 
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remove only one data point and use the rest to estimate the value at this point so as to 1 

test the estimation accuracy, which is also called Leave-Out-One Cross Validation 2 

(Gu; Wahba 1991). 3 

The basic motivation behind the Cross Validation is minimizing the prediction 4 

error at the sampling points. The Generalized Cross Validation (GCV) is the modified 5 

form of Cross Validation, which is more popular for choosing these turning 6 

parameters (Craven; Wahba 1979). For instance, Gu and Wahba applied the Newton 7 

method to optimize the Generalized Cross Validation score with multiple smoothing 8 

parameters in a smoothing spline model (Gu; Wahba 1991). Wahba briefly reviewed 9 

the properties of Generalized Cross Validation and carried out an experiment to 10 

choose smoothing parameters in the context of variational data assimilation schemes 11 

with Numerical Weather Prediction models (Wahba et al. 1995). Zheng and Basher 12 

also used Generalized Cross Validation in thin-plate smoothing spline modeling of 13 

spatial climate data and applied to south Pacific rainfalls (Zheng; Basher 1995). The 14 

Generalized Cross Validation criterion also has been found to possess several 15 

favorable properties, such as consistency of the relative loss (Gu 2002). 16 

Intuitively, if the forecast error matrix is inflated properly, the assimilation 17 

procedure can reassign the weights of the model forecasts and observations. 18 

Therefore the analysis sensitivity is also investigated in this study. Generally speaking, 19 

analysis sensitivity is how uncertainty in the output can be apportioned to different 20 

source of uncertainty in the input (Saltelli et al. 2004; Saltelli et al. 2008). The 21 

quantity can be introduced to the context of statistical data assimilation framework. It 22 
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indicates that the sensitivity of analysis to observations, which is complementary to 1 

the sensitivity of analysis to model forecasts (Cardinali et al. 2004; Liu et al. 2009).. 2 

This study focuses on the methodology part that can be potentially applied in 3 

the geophysical research fields in the near future. This paper consists of 4 sections. 4 

The conventional EnKF scheme is summarized and the improved EnKF with forecast 5 

error inflation scheme is proposed in Section 2. The verification and validation are 6 

conducted on an idealized model in Section 3. Discussion and conclusions are given 7 

in Section 4. 8 

 9 

 10 

2. Methodology 11 

 12 

2.1. EnKF Algorithm 13 

For the sake of consistency, a nonlinear discrete-time dynamic forecast and linear 14 

observation system can be expressed as (Ide et al. 1997),  15 

  t a

1 1  i i i iMx x η , (1) 16 

 
o t

i i i i y H x ε , (2) 17 

where i stands for the time index;  
T

t t t t

,1 ,2 ,x , x ,..., xi i i i nx  is the n-dimensional true 18 

state vector at i-th time step;  
T

a a a a

1 1,1 1,2 1,x , x ,..., xi i i i n   x  is the n-dimensional 19 

analysis state vector which is an estimate of 
t

1ix , 1iM  is a nonlinear dynamic 20 

forecast operator such as a numeric weather prediction model; 21 

 
T

o o o o

,1 ,2 ,y , y ,..., y
ii i i i py  is a ip -dimensional observation vector; iH  is the 22 
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observation operator matrix, iη  and iε  are the forecast and observation error 1 

vectors, which are assumed to be time-uncorrelated, statistically independent of each 2 

other and have mean zero and covariance matrices iP  and iR , respectively. The 3 

EnKF assimilation result is a series of analysis state 
a

ix  that are sufficiently close to 4 

the corresponding true states 
t

ix , based on the information provided by iM
 

and 5 

o

iy . 6 

Suppose the perturbed analysis state at previous time step a(j)

1ix  has been 7 

estimated (1 j m   and m is the ensemble size), the detailed EnKF assimilation 8 

procedure is summarized as the following forecast step and analysis step (Burgers et 9 

al. 1998; Evensen 1994). 10 

Step 1. Forecast Step. 11 

The perturbed forecast states are generated by dynamic model forecast forward 12 

  f(j) a(j)

1 1i i iM  x x . (3) 13 

The forecast state 
f

ix  is defined to be the ensemble mean of 
f(j)

ix  and the forecast 14 

error covariance matrix is initially estimated as the sampling covariance matrix of 15 

perturbed forecast states 16 

   
T

f(j) f f(j) f

1

1

1

m

i i i i i

jm 

  

P x x x x . (4) 17 

Step 2. Analysis Step. 18 

The analysis state is estimated by minimizing the following cost function 19 

        
T T

f 1 f o 1 o( ) i i i i i i i iJ       x x x P x x y H x R y H x , (5) 20 

which has the analytic form 21 
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  
1

a f T T

i i i i i i i i i



  x x PH H PH R d , (6) 1 

where 2 

 
o f

i i i i d y H x , (7) 3 

is the innovation statistic (observation-minus-forecast residual). In order to complete 4 

the ensemble forecast, the perturbed analysis state are calculated using perturbed 5 

observations (Burgers et al. 1998), that is  6 

    
1

a(j) f(j) T T '(j)

i i i i i i i i i i



   x x PH H PH R d ε , (8) 7 

where 
'(j)

iε  is a normally distributed random variable with mean zero and covariance 8 

matrix iR . Here  
1

T

i i i i



H PH R  can be easily calculated using the 9 

Sherman-Morrison-Woodbury formula (Liang et al. 2012; Tippett et al. 2003). 10 

Finally, set 1 i i  and return to Step 1 for the model forecast at next time step. 11 

 12 

2.2. Influence matrix and forecast error inflation 13 

It is recognized that the forecast error inflation scheme should be included in any 14 

ensemble based assimilation scheme, otherwise, the filter could diverge (Anderson; 15 

Anderson 1999; Constantinescu et al. 2007). The multiplicative inflation is one of the 16 

commonly used inflation techniques, which adjusts the initially estimated forecast 17 

error covariance matrix iP  to i i P  and then estimates the inflation factors i  18 

properly. 19 

In previous studies, there are many methods for estimating the inflation factor, 20 

such as the maximum likelihood approach (Liang et al. 2012; Zheng 2009), moment 21 

approach (Li et al. 2009; Miyoshi 2011; Wang; Bishop 2003) and Bayesian approach 22 
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(Anderson 2007, 2009). In this study, a new procedure for estimating the 1 

multiplicative inflation factors i  is proposed based on the following Generalized 2 

Cross Validation (GCV) function (Craven; Wahba 1979) 3 

 

 

 

2
T 1/2 1/2

2

1
( )

( )
1

Tr ( )

i

i

i i p i i i

i
i

p i

i

p
GCV

p







 


 

 
 

d R I A R d

I A

, (9) 4 

where 
ipI  is the identity matrix with dimension i ip p , 1/2

i


R  is the square root 5 

matrix of 
iR  and  6 

  
1

1/2 T 1/2( )
ii p i i i i i i 



  A I R H PH R R  (10) 7 

is the influence matrix (see Appendix for details). 8 

The estimation procedure of inflation factors i  is implemented between the 9 

Step 1 and 2 in Section 2.1. Then the perturbed analysis states are modified to  10 

    
1

a(j) f(j) T T '(j)

i i i i i i i i i i i i 


   x x PH H PH R d ε . (11) 11 

The flowchart of the EnKF equipped with forecast error inflation based on GCV 12 

method is shown in Figure 1. 13 

 14 

2.3. Analysis sensitivity  15 

In EnKF, the analysis state (Eq. (6)) can be treated as a weighted average of the 16 

observation and forecast, that is, 17 

  a o f

i i i n i i i  x K y I K H x  (12) 18 

where  
1

T T

i i i i i i i



 K PH H PH R  is the Kalman gain matrix, and nI  is the identity 19 

matrix with dimension n n . Then the normalized analysis vector can be expressed 20 

as 21 
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  a 1/2 1/2 o 1/2 1/2 f

ii i i i i i i p i i i i

   y R H K R y R I H K R y  (13) 1 

where f 1/2 f

i i i i

y R H x  is the normalized projection of the forecast on the 2 

observation space. The sensitivities of the analysis to the observation and forecast are 3 

defined as 4 

 

a
o 1/2 T T 1/2

o

i
i i i i i

i


 


y
S R K H R

y
, (14) 5 

  
a

f 1/2 T T 1/2

f i

i
i i p i i i

i


  


y
S R I K H R

y
, (15) 6 

respectively, which satisfy 
o f

ii i p S S I . 7 

The elements of the matrix 
o

iS  reflect the sensitivity of the normalized analysis 8 

state to the normalized observations. Its diagonal elements are the analysis 9 

self-sensitivities, and off-diagonal elements are cross-sensitivities. On the other hand, 10 

the elements of the matrix f

iS  reflect the sensitivity of the normalized analysis state 11 

to the normalized forecast vector. The two quantities are complementary. 12 

In fact, the sensitivity matrix 
o

iS  is equal to the influence matrix iA  (see 13 

Appendix B for detail proof), whose trace can be used to measure the “equivalent 14 

number of parameters” or “degrees of freedom for signal”. Similarly, it can be 15 

interpreted as a measurement of the amount of information extracted from the 16 

observations. The trace diagnostic can be used to analyze the sensitivities to 17 

observation or forecast vector (Cardinali et al. 2004). The Global Average Influence 18 

(GAI) at i-th time step is defined as the globally averaged observation influence, that 19 

is 20 

 

oTr( )i

i

GAI
p


S

 (16) 21 
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where ip  is the total number of observations at the i-th time step. 1 

In the conventional EnKF, the forecast error covariance matrix iP  is initially 2 

estimated using a Monte Carlo method with the short-term ensemble forecast states. 3 

However, due to the limited ensemble size and large model error, the sampling 4 

covariance matrix of perturbed forecast states is usually an underestimation of the 5 

true forecast error covariance matrix. This will cause the assimilation systems over 6 

trust the forecast state, and then exclude the observational information. That is why 7 

the values of GAI are too small in conventional EnKF scheme. It will show that in 8 

simulations, this problem will be alleviated to some extent through the inflation 9 

adjustment on forecast error covariance matrix. 10 

 11 

2.4 Analysis RMSE 12 

In the following experiments, the “true” state t

ix  is non-dimensional and can 13 

be obtained by numerical solution of partial differential equations. In this case, the 14 

distance of the analysis state to the true state can be defined as the analysis 15 

root-mean-square error (RMSE), which is used to evaluate the accuracy of the 16 

assimilation results. The RMSE at i-th time step is defined as 17 

  
2

a t

, ,

1

1
RMSE x x

n

i k i k

kn 

  . (17) 18 

where 
a

,x i k  and 
t

,x i k  are the k-th component of the analysis state and true state at 19 

i-th time step. 20 

 21 

3. Experimentations 22 
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 1 

The proposed data assimilation scheme is validated using the Lorenz-96 model 2 

(Lorenz 1996) with model error and a linear observation system as a test bed in this 3 

section. The performances of the assimilation schemes described in Section 2 are 4 

evaluated through the following experiments. 5 

 6 

3.1. The dynamic forecast model and observation systems 7 

The Lorenz-96 model (Lorenz 1996) is a quadratic nonlinear dynamical system, 8 

which has the properties relevant to realistic forecast problems and is governed by the 9 

equation 10 

 1 2 1( )k
k k k k

d
F

dt
     

X
X X X X , (18) 11 

where 1,2, ,40k  . The cyclic boundary conditions 
1 1K X X , 0 KX X , 12 

1 1K X X  is applied to make Eq. (18) to be well-defined for all values of k. The 13 

Lorenz-96 model is “atmosphere-like”, since the three terms on the right-hand side of 14 

Eq. (18) can be analogized to a nonlinear advection-like term, a damping term, and an 15 

external forcing term respectively. It can be thought of as some atmospheric quantity 16 

(e.g. zonal wind speed) distributed on a latitude circle. Therefore the Lorenz-96 17 

model is widely used as a test bed to evaluate the performances of assimilation 18 

schemes in many studies (Wu et al. 2013). 19 

The time step is set as 0.05 non-dimensional unit when generate the numeric 20 

solution, which is roughly equivalent to 6 hours in real time, assuming that the 21 

characteristic time-scale of the dissipation in the atmosphere is 5 days (Lorenz 1996). 22 
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The true state is derived by a fourth-order Runge-Kutta time integration scheme 1 

(Butcher 2003). The forcing term is set as F = 8, so that the leading Lyapunov 2 

exponent implies an error-doubling time of about 8 time steps, and the fractal 3 

dimension of the attractor is 27.1 (Lorenz; Emanuel 1998). The initial value is chosen 4 

to be k FX  when 20k   and 20 1.001FX . 5 

In this study, the synthetic observations are assumed to be generated at all of the 6 

40 model grids but every 4 time steps by adding random noises which are 7 

multivariate-normally distributed with mean zero and covariance matrix iR  to the 8 

true states. The observation errors are assumed to be spatially correlated, which is the 9 

most cases in remote sensing observations and radiances data. The variance of the 10 

observation on each grid point is set 
2

o 1   and the covariance of the observations 11 

between the j-th and k-th grid points is 12 

    min ,402

o, 0.5
j k j k

i j k 
  

 R . (19) 13 

The heat map of the observation error covariance matrix is shown in Figure 2. 14 

 15 

3.2. Assimilation schemes comparison 16 

Since model error is inevitable in practical dynamic forecast models, it is 17 

reasonable for us to add model error to the Lorenz-96 model in the assimilation 18 

process. Lorenz-96 model is a forced dissipative model with a parameter F that 19 

controls the strength of the forcing (Eq. (18)). The model forecast changes very much 20 

along with the change of F and is chaos with integer values of F larger than 3. 21 

Therefore the forcing term is set as 7 to simulate the range of model error in the 22 
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assimilation schemes while retaining 8F   when generating the “true” state. The 1 

ensemble size is selected as 30. 2 

To evaluate the analysis sensitivity, the GAI statistics (Eq. (16)) are calculated 3 

and the results are plotted in Figure 3 over 2000 time steps, which is about equivalent 4 

to 500 days in realistic problems. It clearly shows that, the percentage of the analysis 5 

result relied on the observation is about 10% for the conventional EnKF, which is 6 

increased to about 30% for the EnKF with forecast error inflation.   7 

To evaluate the assimilation result, the analysis RMSE (Eq. (17)) and the 8 

corresponding values of the GCV functions (Eq. (9)) are calculated and plotted in 9 

Figures 4 and 5, respectively. It illustrates that, the analysis RMSE, as well as the 10 

values of the GCV functions increase sharply if the forecast error inflation is adopted. 11 

The variety of the analysis RMSE is very consistent with that of the value of the GCV 12 

function for the EnKF with forecast error inflation scheme. The correlation 13 

coefficient of the analysis RMSE and the value of the GCV function at the 14 

assimilation time step is about 0.76, which indicting that, the GCV function seems to 15 

be a good criterion to estimate the inflation factor.  16 

The time-mean values of the GAI statistics, the GCV functions and the analysis 17 

RMSE over 2000 time steps are listed in Table 1. These results illustrate that, the 18 

forecast error inflation technique using the GCV function can indeed increase the 19 

analysis sensitivity to the observations and reduce the analysis RMSE.  20 

 21 

 22 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-44, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 4 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



15 
 

4. Discussion and Conclusions 1 

 2 

As we all know that accurately estimating the error covariance matrix is one of 3 

the most important steps in data assimilation, which has curial influence to the 4 

assimilation results. In conventional EnKF assimilation scheme, the forecast error 5 

covariance matrix is estimated as the sampling covariance matrix of the ensemble 6 

forecast states. But due to the limited ensemble size and large model error, this initial 7 

estimate is usually an underestimation, which can lead to that the filter over trusts the 8 

forecasts and excludes the observations, and eventually the divergence of the filter. 9 

Therefore the forecast error inflation with proper inflation factor is increasingly 10 

important.  11 

The multiplicative inflation is an effective inflation technique and the inflation 12 

factor can be estimated under different assumptions. The moment approach can be 13 

easily conducted based on the moment estimation of the innovation statistic. The 14 

maximum likelihood approach can obtain a more accurate inflation factor than the 15 

moment approach but with complicated calculations of high dimensional matrix 16 

determinant. The Bayesian approach assumes a prior distribution for the inflation 17 

factor but limited to the spatially independent observational errors. In this study, the 18 

inflation factor is estimated from the point of view of cross validation and the 19 

analysis sensitivity is detected. 20 

The GCV function seems to be a good objective function that can well quantify 21 

the goodness of fit of the error covariance matrix. In fact, cross validation, which can 22 
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evaluate and compare learning algorithms, is a widely used statistical method. The 1 

most common form of cross validation is leave-out-one cross validation. For this 2 

algorithm, all the data except for a single observation are used for training and the 3 

comparison is made on that single observation. Generalized Cross Validation 4 

estimate is a modified form of ordinary Cross Validation, which has the 5 

rotation-invariant property relative to an orthogonal transform of the observations and 6 

is a consistent estimate of the relative loss. 7 

In this study, the idea of Cross Validation is adopted to the inflation factor 8 

estimation in the improved EnKF assimilation scheme and validated on the 9 

Lorenz-96 model. The values of the GCV function obviously decrease in the 10 

proposed approach comparing with that in the conventional EnKF scheme. The 11 

analysis RMSE in the proposed approach also is much smaller than that in the 12 

conventional EnKF scheme. This suggested that the estimate inflation factor method 13 

through minimizing the GCV function works very well. 14 

The varieties of analysis sensitivity in the proposed approach and in the 15 

conventional EnKF scheme are also investigated in this study. The influence matrix is 16 

treated as the partial derivative of the normalized analysis state vector to the 17 

normalized observational vector, which is also used in the GCV function. 18 

Additionally, the time-mean Global Average Influence statistic is increased from 19 

about 10% in the conventional EnKF scheme to about 30% in the proposed improved 20 

EnKF assimilation scheme. This illustrated that the shortcoming of the assimilation 21 

result excessively depending on the forecast and excluding the observation can be 22 
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mitigated in some extent. The relations of analysis state to forecast state and 1 

observation are more reasonable. 2 

It is notable that, the inflation factor is assumed to be constant in space in this 3 

study, which may be not the case in the realistic assimilation problems. Therefore 4 

persistently adjust all the state vectors using the same inflation factor could 5 

systematically overinflate the ensemble variances in sparsely observed areas, 6 

especially when the observations are unevenly distributed. In the case studies 7 

conducted in Section 3, the observations are relatively evenly distributed and the 8 

assimilation accuracy can be indeed improved by the forecast error inflation 9 

technique. It mainly sheds light on the methodology and validate on Lorenz-96 model 10 

to illustrate the feasibility in this study. In the near future, it will investigated that how 11 

to modify the adaptive procedure to suit the system with unevenly distributed 12 

observations and apply the proposed methodologies using more sophisticated 13 

dynamic and observation systems. 14 

 15 

Appendix A 16 

From Eq. (2), the normalized observation equation can be defined as 17 

 
o 1/2 t

i i i i i

 y R H x ε , (A1) 18 

where 
o 1/2 o

i i i

y R y  is the normalized observation vector and ~ ( , )i Nε 0 I , 
ipI  is 19 

the identity matrix with dimension i ip p . Similarly, the normalized analysis vector 20 

is 
a 1/2 a

i i i i

y R H x  and the influence matrix iA  relates the normalized observation 21 

vector to the normalized analysis vector, ignoring the normalized forecast state in the 22 
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observation space (Gu 2002), i.e., 1 

  a 1/2 f o 1/2 f

i i i i i i i i i

   y R H x A y R H x . (A2) 2 

Since the analysis state 
a

ix  is given by Eq. (5), it can be easily checked that the 3 

influence matrix iA  is given by 4 

  
1

1/2 T 1/2

ii p i i i i i i



  A I R H PH R R . (A3) 5 

If the initial forecast error covariance matrix is inflated as described in Section 2.2, 6 

the influence matrix is treated as the following function of   7 

  
1

1/2 T 1/2( )
ii p i i i i i i 



  A I R H PH R R , (A4) 8 

The principle of cross validation aims at minimizing the estimated error at the 9 

observation grid point. Lacking an independent validation data set, the alternative 10 

strategy commonly used is to minimize the squared distance between the normalized 11 

observation value and the analysis value while not using the observation on the same 12 

grid point, that is the following objective function 13 

   
2

o 1/2 a[k]

,

1

1
( )

ip

i i k i i i k
ki

V
p

 



  y R H x , (A5) 14 

where a[k]

ix  is the minima of the following “delete-one” objective function 15 

        
T T

f 1 f o 1/2 o

,( )i i i i i i k i ik k
  

 
    x x P x x y H x R y H x . (A6) 16 

The subscript –k means a vector (matrix) with its k-th element (k-th row and column) 17 

deleted. Instead of minimizing Eq. (A6) ip  times, the objective function (Eq. (A5)) 18 

has another more simple expression (Gu 2002) 19 

 
  
 

2
o 1/2 a

,

2
1

,

1
( )

1

ip
i k i i i k

i

ki k k

V
p a













y R H x
, (A7) 20 

where 
,k ka  is the element at the site pair (k, k) of the influence matrix ( )i A . Then, 21 
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substituting 
,k ka  by the average ,

1

1 1
Tr( ( ))

ip

k k i

ki i

a
p p




 A  and ignoring the 1 

constant to get the following generalized cross validation (GCV) statistic (Gu 2002) 2 

 

 

 

2
T 1/2 1/2

2

1
( )

( )
1

Tr ( )

i

i

i i p i i i

i
i

p i

i

p
GCV

p







 


 

 
 

d R I A R d

I A

. (A8) 3 

 4 

Appendix B 5 

The sensitivities of the analysis to the observation is defined as 6 

 

a
o 1/2 T T 1/2

o

i
i i i i i

i


 


y
S R K H R

y
, (B1) 7 

Substitute the Kalman gain matrix  
1

T T

i i i i i i i



 K PH H PH R  into o

iS , then  8 

 

 

   

     

 

o 1/2 T T 1/2

1
1/2 T T 1/2

1
1/2 T T 1/2

1 1
1/2 T T 1/2 1/2 T 1/2

1
1/2 T 1/2

i

i i i i i

i i i i i i i i i

i i i i i i i i i i i

i i i i i i i i i i i i i i i i i

p i i i i i i

i











 
 





 

   

    

  



S R K H R

R H P H R H P H R

R H P H R H P H R R R

R H P H R H P H R R R H P H R R R

I R H P H R R

A

(B2) 9 

Therefore, the sensitivity matrix 
o

iS  is equal to the influence matrix iA . 10 
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Table 1. The time-mean values of the GAI statistics, the GCV functions and the 1 

analysis RMSE over 2000 time steps. 2 

 3 

EnKF 

schemes 

Conventional 

EnKF 

EnKF with forecast 

inflation 

GAI 10.78% 29.21% 

GCV 31.14 3.29 

RMSE 4.01 1.10 

 4 
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Figure captions 1 

Figure.1. Flowchart of the proposed assimilation scheme. 2 

Figure 2. The heat map of the observation error covariance matrix. 3 

Figure 3. The GAI statistics of the conventional EnKF scheme and the improved 4 

EnKF with forecast error inflation scheme. 5 

Figure 4. The analysis RMSE of the conventional EnKF scheme and the improved 6 

EnKF with forecast error inflation scheme. 7 

Figure 5. The values of the GCV functions of the conventional EnKF scheme and the 8 

improved EnKF with forecast error inflation scheme. 9 
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 1 
Figure.1. Flowchart of the proposed assimilation scheme. 2 
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 1 

Figure 2. The heat map of the observation error covariance matrix. 2 
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 1 

Figure 3. The GAI statistics of the conventional EnKF scheme and the improved 2 

EnKF with forecast error inflation scheme.  3 
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 1 

Figure 4. The analysis RMSE of the conventional EnKF scheme and the improved 2 

EnKF with forecast error inflation scheme.  3 
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 1 

Figure 5. The values of the GCV functions of the conventional EnKF scheme and the 2 

improved EnKF with forecast error inflation scheme.  3 

 4 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-44, 2016
Manuscript under review for journal Nonlin. Processes Geophys.
Published: 4 October 2016
c© Author(s) 2016. CC-BY 3.0 License.


